Introduction to Solar Cells

111 6 1

The energy problem

- The world uses about 13 TW of power today.
- •We probably need to generate \sim 30 TW of power in 2050.
- Within the next 10 years, the amount of oil we can extract each year will probably start to decline.
- If we do not dramatically reduce our emissions of carbon dioxide, the average temperature of the planet will probably rise by several degrees.

Our options

- Burn fossil fuels and sequester the carbon
- Nuclear
- Renewable energy

Why solar cells are likely to provide a significant fraction of our power

- We need ~ 30 TW of power, the sun gives us 120,000 TW.
- Solar cells are safe and have few non-desirable environmental impacts.
- Using solar cells instead of burning coal to generate electricity is a much easier way to reduce carbon emissions than replacing gasoline in vehicles.
- Solar cells provide electricity exactly when we need it the most.

Conventional p-n junction photovoltaic (solar) cell

Jenny Nelson, The Physics of Solar Cells, 2003.

Polycrystalline silicon solar cells

12 % efficiency \$350/m²

 Cost (\$/W)

 Cell
 \$2.50

 Making the module
 \$1.00

 Inverter
 \$0.50

 Installation
 \$4-5.00

 TOTAL
 \$8-9.00

DOE numbers

Average cost of PV cell electricity: \$.27/kW-hr

Today's grid electricity: \$0.06/kW-hr

Single crystal cells

Dick Swanson will show you how SunPower makes 21 % efficient cells.

What is the potential for using less silicon and reducing the costs?

Multijunction cells

SpectroLab has achieved 37 % efficiency

Costs are estimated at \$50,000/m², so concentrators must be used.

Quantum Dot Solar Cells

Energy levels are quantized.Electrons do not rapidly give up there energy to phonons.

Art Nozik, Inorganic Chemistry, 44 (2005) p. 6893.

The cheapest option

Efficiency: 0.3 %

We don't have the land and water to provide the world with energy this way.

Can we artificially improve the efficiency?

Thin Film Cells

A thin film of semiconductor is deposited by low cost methods.

Less material is used.

Cells can be flexible.

CIGS (CulnGaSe₂) World record: 19.5 % Stable Is there enough In available?

amorphous Si World record: 12.1 % not completely stable

CdTe

World record: 16.5 % Stable Cd is toxic

Chris Eberspacher will tell you how Nanosolar prints CIGS cells.

5 % efficient organic cells can be deposited from solution

P. Fairley, IEEE Spectrum. Jan. 2004 p.28