

Status and Trends for Stationary Fuel Cell Power Systems

Dan Rastler

Technical Leader, Distributed Energy Resources Program

drastler@epri.com

650-855-2521

Discussion Topics

- Review Technical and R&D Status
- Markets and Applications
- R&D Needs
- Gaps and Critical Success Factors for Large Scale Commercialization
- CleanTech Accelerator for Silicon Valley

Why the Interest in Fuel Cells?

- Very high fuel conversion efficiencies
- Direct conversion avoids combustion process allows for very low emissions
- High reliability- fewer moving parts
- Modularity scale-able to many sizes from 1 kW to 10's MW – offering a wide range of applications
- Quite Operation < 60 dBA
- High Power Quality due to use of dc to ac power conditioning equipment
- Waste heat which can be used in cogeneration applications enabling higher overall fuel efficiencies
- Fuel Cells are ideal distributed generators, enabling power to be sited at the 'point of use'

Introduction: Fuel Cell Types *They can be Characterized by electrolyte type, materials of construction and operating temperature*

Туре	Temp F	Electrolyte	Materials
PEMFC Polymer-exchange membrane fuel cells	200	FI, Sulfonic Carbon Acid Polymer	Carbon, Sainless Steel Pt. Catalyst
PAFC Phosphoric-acid Fuel cels	400	Phosphoric Acid	Carbon Pt. Catalyst
MCFC Molten-carbonate fuel cells	1200	Lithium , Potassium Carbonate Salts	Ni - catalyst Stainless Steel
SOFC Solid-oxide fuel cells	1500 -1800	Yittra & Zirconium Oxides	Ceramic Nickel Alloys
AFC Alkaline fuel cell	250-480	KOH and NaOH	Ni, metal oxides Pt. Catalyst

Fuel Cell Types and Comparisons

Fuel Cell Type and Scale in	Electrical Efficiency, LHV	Current and {Projected} Cost \$/kW	Status
PAFC		\$ 4000	Commercial
200 - 1,000	40%	{3000}	
MCFC		\$4000	Pre-commercial
250-1000	44-55%	{1200}	
PEMFC 5 kW/ to 1 000	32-42%	\$2000-\$4000	Pre-production trials
0 100 1,000	02 4270	{900}	Under development
SOFC		\$20,000	Beta trials
5 kW – 1,000	40-55%	{700-900}	Under development

Fuel Cell System Trends Compared with other Distributed Generation Technologies

Electrical Generation

Benchmarking Fuel Cells

Range of Total Energy Cost (\$/kWh)

Includes Capital, Financing, Fuel, and Maintenance (Net of Recovered Waste Heat)

What Might the Future Look Like? Grid integrated Distributed Power

Vision: Distributed Energy Resources Imbedded systems at End-user locations; Smart Grid; Dispatchable DER Assets; Utility as the Network Manager

Overview Status of Stationary Fuel Cell Power Systems

Polymer Electrolyte Membrane (PEMFC)

- 1-10 kW
- 25-40 % efficiency LHV
- \$ 5,000 /kW

Phosphoric Acid Fuel Cells (PAFC)

- 200-1000 kW
- 40 % efficiency LHV
- \$ 3,500 / kW

Molten Carbonate Fuel Cells (MCFC)

- 250- 1,000 kW - 45 % efficiency - \$ 3,000-4,000 / kW

Solid Oxide Fuel Cells (SOFC)

- 1-250 kW
- 45-48 % efficiency
- \$10,000 20,000/kW

Phosphoric Acid Fuel Cells

Have been fully demonstrated in the field; show good availability and reliability; but have not secured market penetration do to high capital costs

Carbonate Fuel Cell Systems

Several pre-commercial systems and field trials under way

Status: Solid Oxide Fuel Cell Systems Several field trials have occurred; Advanced technology still in R&D Lab phase

Small SOFC systems are under laboratory evaluation

Mitsubishi Materials Corporation

Fuel Cell Technology

Ceramic Fuel Cells Limited

Copyright © 2005 Electric Power Research Institute, Inc All rights reserved

14

Status: PEMFC Systems Most vendors developing systems for telecom and battery replacement markets

I-1000™ 1kW PEM Fuel Cell

GM Demo at Dow

Fuel Cell Turbine Hybrid Cycles

Direct Cycle	Characteristic	Indirect Cycle	
Pressurized	Fuel Cell Pressure	Non-Pressurized	
Higher	Efficiency	High	
More Difficult to Match	Flow & Pressure/ratio	Easier to Match	
Limited	Operational Flexibility	Some	

Direct Carbon Fuel Cell (DCFC)

Emerging Technology in Lab Stage R&D at LLNL, SRI, SARA and CellTech

- The <u>net</u> reaction is the same as combustion
- Electric power and CO₂ are the products
- 80 % of heat of combustion is convertible into power
 - HHV= (32.8 MJ/kg-C; 14.1 MBTU/lb-C)

PEMFC R&D Needs for Stationary Power

Key Areas of R&D:

- Durable electrolyte
- High temperature electrolyte
- Lower Pt. Loadings
- Low System Efficiency
- Complex Fuel Processing

SOFC R&D and Materials Research Needs

Key Areas of R&D:

- Stable Interconnect under anode and cathode environments
- Advanced Electrodes
- Seals
- Low cost fabrication methods
- High power density
- Durability

Advanced SOFC Concepts Under Development

Siemens-Westinghouse

CeramPhysics, Inc.

Innovation and R&D Required for Large Markets

Early Markets

- Schools & Universities

2005-2008

- Government Buildings
- CHP; Free Fuel
- National Parks
- Military Bases
- State RPS Programs

2008-2010

- 5 kW 75 kW PEMFC
- 250 1 MW MCFC, and SOFC
- 5- 40 kW SOFC
- \$ 1,500-\$2,000 / kW

<u>C</u> <u></u>

R&D Targets Needed to achieve 8 cents/kWh Distributed Fuel Cell Power System Requirements All Electric Case – non-cogeneration /cooling scenario

Gaps and Barriers to Large Market Applications

- Breakthroughs are needed current systems offer limited market applications
- **High Capital Cost** systems < \$ 700 per kW installed
- Long Durability and Life fuel cell stack life ~8-10 years
- Low Cost of Electricity vs. other DG options and retail delivered power (< 8 cents per kWh)
- Technology risk competitive markets will not adopt until fuel cells are proven
- High Installation Costs including permitting, and interconnection & project development
- **Regulatory Framework** Competitive market structure limits adoption of emerging options

Stationary Fuel Cells – Trends What does the Future Hold?

CleanTech Accelerator for Silicon Valley " A Working Concept "

Goals:

- Establish and Grow the "EcoSystem" for CleanTech R&D in California – starting with Si Valley Companies, Talent, Skills, & Resources
- Facilitate Networking, Deal Flow, Early-Stage Investments in CleanTech Areas:
 - Energy: Alternative Energy Systems; Grid; Fuel
 - Materials
 - Water
 - Environment
- Accelerate market application of CleanTech products and services

Copyright © 2005 Electric Power Research Institute,Inc All rights reserved

The Electric Power Research Institute (EPRI)

Thank You!

drastler@epri.com

650-855-2521

26