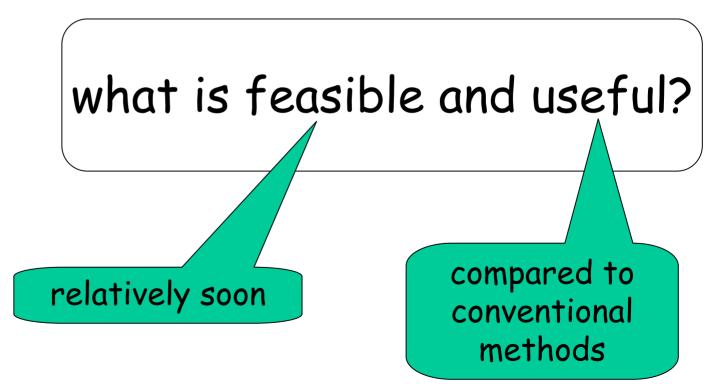
# quantum information technology

Tad Hogg HP Labs


# Hype or reality?

- possible in principle
- difficult in practice
  - quantum states are fragile
- limited progress so far, e.g.,
  - factoring: 15 = 3x5
  - search: 3-variable MAXCUT
    - a graph partitioning problem

http://www.hpl.hp.com/research/qsr/ focus at HP

- identify uses of early technology
- use molecular electronics capabilities
  - currently: molecular memory & logic
  - maybe: quantum cellular automata?





# early technology

- few bits
  - ~20 or so
- few operations
  - before decoherence destroys state
- entanglement is a scarce resource
- high error rate
  - error correction needs many extra bits
  - so check & repeat instead of correct

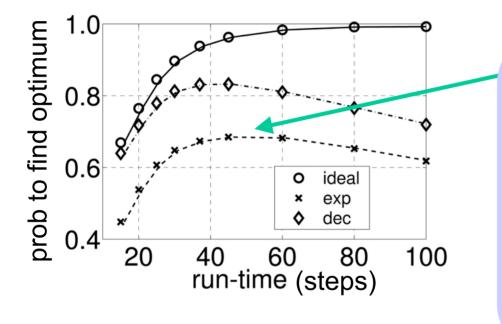
### uses of early technology

- sensors
- algorithm behaviors
- economic coordination
- chemistry simulation

#### sensors

- quantum states are fragile
  - destroyed by observation &
  - decoherence
- bad news:
  - limits computation time
- possible good news:
  - extremely sensitive sensors

study how decoherence depends on hardware, choice of operators,...


### effect of decoherence

- examine experimentally
- one example:
  - implement quantum search algorithm
  - compare actual & ideal behaviors
  - joint work: MIT/HP/IBM

## qubits based on spins

nuclear magnetic resonance (NMR)
one approach to quantum computing
-good for initial experiments
-difficult to scale to many bits

#### theory vs. experiment



experimentally, prob to find optimum reaches a maximum (due to decoherence)

other errors: pulses not perfect discrete approx to adiabatic

Matthias Steffen et al., Experimental Implementation of an Adiabatic Quantum Optimization Algorithm, *Physical Review Letters* **90**, 067903 (2003)

### uses of early technology

- sensors
- algorithm behaviors
- economic coordination
- chemistry simulation

## combinatorial search

- shortest tour among several cities
- low energy shape for protein
- class scheduling
  - assign students to classes
  - constraints, e.g.,
    - pick popular professors
    - avoid early morning classes

#### quantum search

- a complex number for each state
   "amplitude"
- rapid operations on all these numbers
   even though exponentially many values!
- randomly produce single state
  - probability = |amplitude|<sup>2</sup>
  - one-shot (watched computer doesn't compute)
  - arrange large amplitudes for solutions

# search algorithms

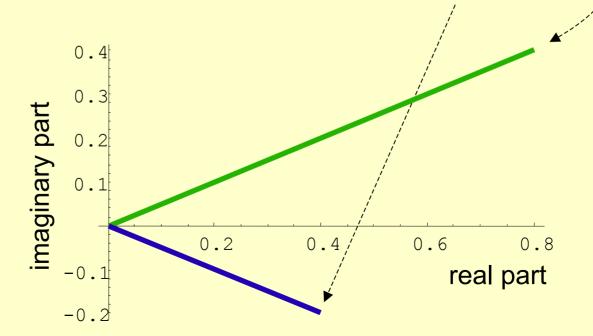
- unstructured (L. Grover, 1997)
  amplitude amplification
- heuristics (T. Hogg, 1998, 2000)
  - tuned to typical structure
- adiabatic (E. Farhi et al., 2001)
  - slowly changing operators
- combinations

- e.g., portfolios (S. Mauer et al., 2001)

# evaluate algorithm behavior

- simulation with classical computer
- theory
- use a quantum computer

http://www.hpl.hp.com/shl/projects/quantum/demo


# visualizing algorithms

- complex number for each state
- draw each as line segment
  - in complex plane
  - color according to number of conflicts
- algorithm steps change amplitudes
  - visualized as moving lines

http://www.hpl.hp.com/shl/projects/quantum/demo

#### example: 2 states

- amplitudes
  - state 1 with 2 conflicts:
  - state 2 with 4 conflicts:



(4+2i)/5

(2-i)/5

http://www.hpl.hp.com/shl/projects/quantum/demo



# theory

- difficult math problem
  - as with theory for classical computing
  - focus often on worst case behaviors
- quantum useful even if only for typical case
  - e.g., typical hard problems:
    - exponentially many solutions
    - though only a small fraction of all possibilities
  - theory often treats single-solution cases

# algorithm behavior

- simulation: limited to ~30 bits
  - too small to identify trend?
- theory: difficult
  - usually worst case, while major benefit only requires improved typical case
- quantum computer
  - help understand algorithms beyond ~30 bits
    - $\cdot$  even though this size too small for practical use

### uses of early technology

- sensors
- algorithm behaviors
- economic coordination
- chemistry simulation

#### economic coordination

- entanglement: correlated choices
- improve economic mechanisms?
  - e.g., public goods provision
- open questions
  - better than cryptographic methods?
  - how would people use quantum methods?
    - laboratory economic experiments

### uses of early technology

- sensors
- algorithm behaviors
- economic coordination
- chemistry simulation

# quantum helps nanotech?

- molecular devices with quantum behaviors (e.g., bond formation)
  - difficult to compute with many atoms
  - quantum computers could help
  - alternatives:
    - conventional *approximate* computation
    - engineering design to avoid hard cases
      - e.g., molecular manufacturing with stiff structures

## nanotech helps quantum

- atomically precise structures
  - e.g., self-assembly
    - such as DNA patterning (E. Winfree, Caltech)
  - e.g., molecular manufacturing
- could improve quantum hardware

#### summary: early quantum technology

- sensors
- algorithm behaviors
- economic coordination
- chemistry simulation