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Hype or reality?
• possible in principle
• difficult in practice

– quantum states are fragile

• limited progress so far, e.g.,
– factoring: 15 = 3x5
– search: 3-variable MAXCUT

• a graph partitioning problem



http://www.hpl.hp.com/research/qsr/

focus at HP

• identify uses of early technology
• use molecular electronics capabilities

– currently: molecular memory & logic
– maybe: quantum cellular automata?



what is possible?

what is feasible and useful?

compared to
conventional

methods
relatively soon



early technology

• few bits 
– ~20 or so

• few operations 
– before decoherence destroys state

• entanglement is a scarce resource
• high error rate

– error correction needs many extra bits
– so check & repeat instead of correct



uses of early technology

• sensors
• algorithm behaviors
• economic coordination
• chemistry simulation



sensors

• quantum states are fragile
– destroyed by observation & environment
– decoherence

• bad news: 
– limits computation time

• possible good news: 
– extremely sensitive sensors

study how 
decoherence 
depends on 

hardware, choice 
of operators,…



effect of decoherence

• examine experimentally
• one example:

– implement quantum search algorithm
– compare actual & ideal behaviors

– joint work: MIT/HP/IBM



qubits based on spins
nuclear magnetic resonance (NMR)

one approach to quantum computing

-good for initial experiments

-difficult to scale to many bits



theory vs. experiment
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Matthias Steffen et al., Experimental Implementation of an Adiabatic 
Quantum Optimization Algorithm, Physical Review Letters 90, 067903 
(2003)



uses of early technology

• sensors
• algorithm behaviors
• economic coordination
• chemistry simulation



combinatorial search

• shortest tour among several cities
• low energy shape for protein
• class scheduling

– assign students to classes
– constraints, e.g.,

• pick popular professors
• avoid early morning classes



quantum search

• a complex number for each state
– “amplitude”

• rapid operations on all these numbers
– even though exponentially many values!

• randomly produce single state
– probability = |amplitude|2

– one-shot (watched computer doesn’t compute)
– arrange large amplitudes for solutions



search algorithms

• unstructured (L. Grover, 1997)

– amplitude amplification
• heuristics (T. Hogg, 1998, 2000)

– tuned to typical structure
• adiabatic (E. Farhi et al., 2001)

– slowly changing operators
• combinations

– e.g., portfolios (S. Mauer et al., 2001)



evaluate algorithm behavior

• simulation with classical computer
• theory
• use a quantum computer



http://www.hpl.hp.com/shl/projects/quantum/demo

visualizing algorithms

• complex number for each state
• draw each as line segment 

– in complex plane 
– color according to number of conflicts

• algorithm steps change amplitudes
– visualized as moving lines



http://www.hpl.hp.com/shl/projects/quantum/demo

example: 2 states

• amplitudes
– state 1 with 2 conflicts:     (4+2i)/5
– state 2 with 4 conflicts:     (2-i)/5
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http://www.hpl.hp.com/shl/projects/quantum/demo

demo



theory

• difficult math problem
– as with theory for classical computing
– focus often on worst case behaviors

• quantum useful even if only for typical case
– e.g., typical hard problems: 

• exponentially many solutions
• though only a small fraction of all possibilities

– theory often treats single-solution cases 



algorithm behavior

• simulation: limited to ~30 bits
– too small to identify trend?

• theory: difficult
– usually worst case, while major benefit only 

requires improved typical case
• quantum computer

– help understand algorithms beyond ~30 bits
• even though this size too small for practical use



uses of early technology

• sensors
• algorithm behaviors
• economic coordination
• chemistry simulation



economic coordination

• entanglement: correlated choices
• improve economic mechanisms?

– e.g., public goods provision
• open questions

– better than cryptographic methods?
– how would people use quantum methods?

• laboratory economic experiments



uses of early technology

• sensors
• algorithm behaviors
• economic coordination
• chemistry simulation



quantum helps nanotech?

• molecular devices with quantum 
behaviors (e.g., bond formation)
– difficult to compute with many atoms
– quantum computers could help
– alternatives: 

• conventional approximate computation
• engineering design to avoid hard cases

– e.g., molecular manufacturing with stiff 
structures



nanotech helps quantum

• atomically precise structures
– e.g., self-assembly

• such as DNA patterning (E. Winfree, Caltech)

– e.g., molecular manufacturing

• could improve quantum hardware



summary:
early quantum technology

• sensors
• algorithm behaviors
• economic coordination
• chemistry simulation
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